
Journal of Engineering Mathematics, Vol. 15, No. 2, April 1981 
© 1981 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn 
Printed in the Netherlands 

147 

Nonlinear solution for an applied overpressure on a moving 
stream 

L. W. SCHWARTZ 

Department of Applied Mathematics, University of Adelaide, Adelaide, S.A. 5001, Australia. 

(Received August 26, 1980) 

SUMMARY 

A boundary-integral method is given for the numerical solution of the exact equations for steady two-dimens- 
ional potential flow past a fixed pressure distribution on the free surface of a fluid of infinite depth. The vari- 
ation in wave-resistance coefficient with overpressure and Froude number is presented. A drag-free nonlinear 
profile is obtained. 

1. Introduct ion  

This paper presents a numerical procedure for the solution of  steady two-dimensional potential  

flows past a fixed pressure distr ibution on the free surface of  a fluid of  infinite depth. The dy- 

namic boundary  condit ion on the free-surface is retained in its complete nonlinear form. Such a 

flow can be produced by  blowing air onto the surface of  water flowing in a channel with parallel 

sidewalls. 

In general, a surface pressure distr ibution is a model for the hydrodynamic  effects of  an air- 

cushion vehicle or hovercraft.  It may also be viewed as an inverse method of  solution to the 

classical ship-wave problem. With a given distr ibution of  overpressure, the surface will deform in 

some manner to be determined as part of  the solution. The port ion o f  the deformed surface 

upon which the pressure is applied can be viewed as a rigid obstacle that,  when inserted in the 

water, will produce the calculated flow pattern. It is possible, at least conceptually,  to solve for 

flow past different classes o f  hull forms by i terated solutions to the pressure-distribution problem. 

The linearized version o f  the two-dimensional problem was solved long ago and is discussed 

in detail by Lamb [1 ]. A remarkable feature of  the linearized solution is that certain pressure 

distributions will not  produce any surface elevation at a distance; that  is, their motion will not 

be accompanied by a train o f  waves. Thus, within the context  of  inviscid theory,  the surface 

shapes induced by these pressure distributions will be drag-free hull forms. 

More recently, Von Kerczek and Salvesen [2] have produced numerical solutions to the 

nonlinear problem in water o f  finite depth.  Their method requires that a mesh of  points be 

placed over the entire fluid region; thus they cannot treat the infinite depth case in principle. In 

practice their method is restricted to relatively modest  values of  the depth to pressure-distribu- 

tion-length ratio. 

In the present work, the problem is solving using a boundary integral technique based on 

Cauchy's integral formula. The vector of  unknowns is used entirely to specify the shape of  the 
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flee surface which consequently may be found to high accuracy. The method has been success- 
fully used in a number of  free-surface wave problems (e.g. [3 ], [4], [5 ]). 

Basic theory is given in Section 2. A numerical algorithm involving a truncation of the doubly- 

infinite boundary integral and a low-order discretization of the governing equations is derived in 
Section 3. While higher-order schemes may be expected to improve the accuracy still further, it 

is a remarkable feature of the present method that simple numerical methods provide good 
results over most of  the parameter range of interest. Results for various values of non-dimen- 
sional overpressure Po and pressure-distribution-length Froude number Fr are given in Section 4. 
The system of nonlinear algebraic equations derived in Section 3 is solved by a Newtonian itera- 
tion in each case. Errors resulting from truncation of the boundary integral are shown to be 
quite manageable. Wave resistance is determined as a function of Fr for two values of Po and com- 
pared with the predictions of linear theory. For a large value of overpressure, a nonlinear profile 
with a resistance coefficient of order 10 -4 has been determined. Extension of the method to 
finite depth is discussed in the concluding section. 

2. Theory 

In laboratory coordinates, consider a uniform flow from left to right with speed U. The undis- 
turbed fluid region occupies the lower half of  the z-plane with the free surface corresponding to 
y = Im ( z ) =  0. Now subject the free surface to a pressure distribution P. AssumingP to vanish 
far upstream where the flow remains uniform, the dynamic free surface condition may be writ- 

ten 

U 2 P lq2  
- -  +-~ +gy = const - , (1) 
O 2 

where q is the local fluid speed,/9 the constant fluid density and g the acceleration of gravity. 
This steady flow must, in addition, satisfy the kinematic conditon that the free surface is a 

streamline. 
Selecting U as reference speed and U 2/2g as reference length, (1) becomes, in dimensionless 

variables, 

P0 +q2 +y  = 1 (2) 

where the pressure coefficient is defined as 

P 
P o -  1 U 2 5P 

The conditions of  incompressibility and irrotationality of the fluid motion are satisfied by in- 
troducing the complex potential f ( z  ) = 4~ ( x , y )  + iV ( x , y ) .  f is assumed to be analytic in the 
portion of the z-plane occupied by the fluid. Here ~ is the velocity potential and 4, the stream 

function. 
The free surface is taken to be the streamline ~k = 0. A considerable simplification is achieved 
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by solving the problem in the f- rather than the z-plane. The condition (2) is imposed on the 
known boundary lm ( f )  = 0 and the kinematic condition is satisfied identically. Applying Cau- 
chy's integral formula for the analytic function z ' ( f )  on a contour enclosing the entire lower- 
half f-plane except for an infinitesimal semi-circle around the free-surface point f =  ~b readily 
yields 

x '  (~b) = 1 1 £ / Y' (¢) d~p (3) 
- 7r ~ o - ~  ' 

as a relation between the real and imaginary parts o f z '  on ~ = 0. The Cauchy principal value of 

the improper integral is to be taken. 
The velocity term in (2) may be written 

1 1 
q2 _ _ _  - , (4) 

z' ff)  z' (f)  Ix' (~)]2 + b/(~)]2 

where the bar signifies complex conjugation. For a given distribution of pressure Po (~) ,  the 
system (2) - (4) determines a solution for the surface shape in parametric form (x (q~), y (~b)). 

The solution must also satisfy a radiation condition prohibiting upstream disturbances, i.e. 

x ~ $ ,  y ~ O  as (b-->-oo. 

3. Numerical method 

The system of equations (2) - (4) is to be satisfied at N equally spaced points on the surface. 
The integral in (3) is truncated both upstream and downstream subject to the requirement that 
the applied pressure distribution is sufficiently far removed from either end-point. The error 
produced by this truncation can be estimated by comparing solutions for different choices of 
endpoints. Let h be the point spacing in ~b. Equation (3) is replaced by 

, 1 f~vh xj  1 / 2 = 1 - -  y'(~0)d~0 , j = I , . . . , N .  (5) 

The principal-value integral is treated simply by spacing points symmetrically with respect to 
the pole, viz. Monacella [6]. For simplicity, the numerical integration uses the trapezoidal rule; 
thus the right side of (5) becomes 

1 Y o Y 1 Y N -  1 YN 
1 - - + + . . . +  +1/2 . 

7r 0 - ( / - % )  1 - ( / -  1A) ( N -  1 ) -  ( / -  ~A) N - ( / -  %) 

Values are specified at the zero-th mesh point asy 0 =Yo = Xo = 0 and x o = 1. The values at the 
Nth  point, on the other hand, are to be determined as part of  the solution. This asymmetry is 
the (numerical) radiation condition. The values of x '  at the halfpoints are related to the whole- 
point values by linear interpolation, 
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t t 

X i _  1 + X  I t 
xj_v2 - 2 , j :  l . . . . .  N. (6) 

Equations (5) and (6) may be combined to yield 

t 

4 N-  1 yr i 2 YN t 
x 1 = 1 - - ~ , (7a) 

7r i=1 2 ( / - 1 ) + 1  rr 2 ( N - 1 ) + l  

t p 

4 N -  1 Yi 2 YN 
' ' - ~ , ] = 2  . . . .  N .  ( 7 b )  

x/ = 2 - x / _ l -  7r i=1 2 ( / - ] ) + 1  7r 2 ( N - ] ) + l  

Denote the local error in the surface condition by E i ; thus 

Ei =Poi +q~ +Yi - 1 (8) 

where Poi are the given overpressures. 
Here Yi is found by trapezoidal integration of  y '  according to 

h i 
Yi : -~ Z (Y]- 1 +Yj)" (9) 

]=1 

t . . t ¢ 
Given an initial guess to the solution vectorYi, an improved approximation Yi + Ayi is found by 

t 
Newtonian iteration. That is, the corrections to Yi a r e  found as the solution to the system of  
linear equations 

N (  aEi ) 

]=1 
i = 1 . . . . .  N.  (10) 

The Jacobian may be computed in terms of  local values by 

OEi a (  1 ) a Y i  
- - ~  t 2  , 2 '  "[" " " - ~  

~Y] ~Y] xi +Yi ~Y] 

aXi" ' 1 ~Yi . +Y"8;i + ayj (11) 

! 
where g#. is the Kronecker g-function. The derivatives ~xl./ay ) and ayi/~y / are found explicitly 
from (7) and (9). 

The numerical procedure may be summarised as follows: 
(i) for a given overpressure distribution, assume an initial set o f  values for y~, i ; l, N. In fact 

YI" = 0 is usually adequate; 
(ii) compute x' i from (7); 

(iii) compute qi from (4) andYi from (9); 
(iv) find the error vector E i defined in (8); 
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(v) compute the Jacobian in (11); 

(vi) find the correction to they ' /vec to r  as the solution to the linear system in (10); 

(vii) return to step (ii) and continue until the desired degree of  convergence is achieved. 

A FORTRAN program using this algorithm, and employing a packaged linear equation sol- 

ver, requires only about 70 program steps. A single converged solution using 100 surface points 

typically requires five Newtonian iterations and 20 sec. of  CPU time on a CYBER 173. 

4. D i s c u s s i o n  o f  results  

The algorithm derived above has been used to find a number o f  nonlinear solutions correspond- 

ing to various values of  overpressure P0 and pressure distr ibution length L. Note that L is relat- 

ed to the length-based Froude number  by 

L = 21(Fr) ~ . 

The results to be presented are all for Po = constant over the length L. A number of  other 

solutions corresponding to different distributions of  pressure have been computed  without dif- 

f iculty;  however constant pressure is considered to be the most important  special case and has 

the incidental benefit  that the linear solution, used for comparison, assumes a particularly simple 

form. 

In Figure 1 we compare the computed  nonlinear solution for Po = .15 for q~ between 9.75 

and 16.25. With N =  100 and h = .5, thirteen mesh points represent the loaded port ion of  the 

free surface. Four-point  interpolat ion is used to find the x-values at the 'bow'  xt, and 'stern'  x s 
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Figure 1. 
h =.5, N= 100, - . . . .  

I 
! 

Comparison of linear and numerical solutions for Po = • 15, L = 6.35, Fr = .561; ~ numerical, 
linear. 
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to yield the values L = x s - xb = 6.35 and F r  = .561. Note that with the present normalization 
the length of  a free linear wave is 41r. 

For comparison, the profile computed by linear theory for these values o fpo  and F r  is also 

shown in the figure. Its equation is 

y ( x )  =Po [Y(x; x s )  - Y ( x ;  xb)] (12a) 

where 

r ( x , , x : )  = 

Here 

2 cos x ~ /  + -~ f 

1 -  --rr ," x2 > x ~ .  

; x l  ~ x2 

(12b) 

f0 ' *  e - x t  d t  (12c) 
f ( x )  = t 2 + 1 

is the auxiliary function to the sine and cosine integrals discussed in Abramowitz and Stegun 

[7]. For 0 < x  < 1, f m a y  be found to high accuracy using a few terms in its convergent series 
expansion. For x > 1, Abramowitz and Stegun give an accurate approximation in the form of a 

rational fraction. 

I fR is the dimensional wave resistance (per unit width), a dimensionless resistance coefficient 

may be defined as 

g p R  
C -  (13) 

2p 2 

According to linear theory with constant overpressure P, this coefficient, C~ say, is given simply 

a s  

L l 
C ~ = I - c o s  2 =1 cos (Fr) 2 . (14) 

In the nonlinear case, no such simple formula is available but the coefficient may be computed 

from the converged solution as 

Y b --Ys 
C n - - -  (15) 

2po 

where Yb and Ys,  the (dimensionless) elevations o f  the bow and stern, are also found by four- 
point interpolation. 

The nonlinear solution in Figure 1 shows narrow crests and broad troughs for the downstream 
waves. At a distance o f  about one wavelength aft of  the body, the wave train is essentially peri- 

odic and indistinguishable from the free wave in form. Note also that the mean water level has 
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been displaced upward in the nonlinear wave train. Thus mass is convected by the waves, as pre- 

dicted by nonlinear progressive wave theory, viz. Schwartz [8]. The downstream wave height/ 

wavelength ratio is .106, about 75 per cent of  the theoretical maximum in deep water. Slightly 
higher waves can be calculated for this value of  Fr  by increasing the overpressure slightly. Ulti- 

mately accuracy and convergence will be limited by the relatively small number of  points per 

wave cycle and the tendency of  the f-plane method to distribute points sparsely in regions of  
low speed. 

The upstream 'infinity' condition has been imposed at ¢ = 0, slightly less than one wave- 

length upstream of  the body. Some inaccuracy can be expected near the ends of  the integration 
interval. In Figure 1, the converged nonlinear solution incorrectly predicts a small elevation 

about one-half wavelength upstream of  the bow. Also near the downstream truncation point, 
the nonlinear profile begins to deviate from the periodic wave train. 

The linear solution overpredicts the draft or displacement under the pressure distribution by 

about 7 per cent. The linear wave resistance coefficient C~ = 2.00 is also high by this percentage 

compared with C n = 1.86. 

The question of  up-and-downstream truncation error is addressed again in the results present- 

ed in Figure 2. Here, for Po = .12 and essentially the same Froude number as in the first exam- 

ple we compare two solutions with N = 100 and 160 respectively using the same point spacing 

h = .5. The longer run places 20 additional points upstream and 40 extra points downstream. 
The figure shows the entire region where the two runs have points in common. Significant dif- 

ferences can be seen between the two runs for about the first half wavelength upstream and the 

last whole wavelength at the downstream edge. To the extent that the longer run suffers analo- 
gous truncation error, the portion of  it shown in the figure (as a solid line) may be considered 

exact. The calculated resistance coefficients for the two runs differ by less than 2 per cent. Here 
the wave-train steepness is .078 and the resistance coefficient --- 1.90. 

The wave resistance is plotted versus overpressure length in Figure 3. The range o f  L is 2.6 to 

27 with the corresponding length Froude number varying from .88 to .27. The linear theory 
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Figure 2. Comparison of numerical solutions showing effects of truncation, Po = .12, L = 6.37, Fr = .560; 
h=.5,  N= 160;© ©h=.5 ,  N= 100. 
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Figure 4. A nonlinear wave-free prof'fle, Po = .2, L = 13.00, Fr = .392, - -  
linear theory. 

numerical N = 100, © O © 

pred ic t s  s imple  s inusoidal  b e h a v i o u r  f rom e q u a t i o n  14. The  wave res is tance  is ident ica l ly  zero  

for  L = 47r, 8rr . . . . .  i.e. w h e n  t he  ship l eng th  is an in teger  mul t ip le  o f  a free wave length.  F o r  

c o m p a r i s o n  t w o  sets o f  n o n l i n e a r  resul ts  are p re sen ted ,  for  Po = 0.1 and  0.15.  The  general  ef- 

fects  o f  n o n l i n e a r i t y  are (i)  to  reduce  the  m a x i m u m  res is tance  b y  b e t w e e n  5 and  10 per  cen t ;  

(ii) to  shi f t  t he  curve to  the  r ight  b y  an  a m o u n t  AL ,  w h i c h  has  a typ ica l  value o f  0.5.  These  two  
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effects are qualitatively similar to those reported in the finite depth calculation of  von Kerczek 

and Salvesen [2]. The greatest absolute difference in C is about 0.2, and occurs for several diffe- 

rent values o f  L. 

An interesting question concerning wave resistance is whether a nonlinear solution with finite 

overpressure can ever have exactly zero drag. Figure 3 shows exceedingly small values of  C n 

near L = 13.0 and 27.8. By carefully adjusting the spacing h in order to vary L near the first cri- 

tical point, it was possible to obtain the profile shown in Figure 4. This profile is symmetric 

about its minimum point to about 4 decimal places and the computed value of  C n is 7 x 10 -s . 

We expect that a more elaborate calculation can be made to produce still smaller values of  C n 

and can find no reason to doubt the general result that nonlinear wave-free profiles exist. The 

overpressure P0 = 0.2 is a very large value in terms of  the displacement it produces; yet this pro- 

file was obtained from an initially flat surface in about five iterations. We show the correspond- 

ing linear solution in the figure. It exhibits a small downstream wave train. 

5. Concluding remarks 

While the results o f  the present study are strictly valid only for two-dimensional flow problems, 

they may indicate qualitative trends in three-dimensional cases. To this extent, they would be 

applicable to hovercraft design. The present formulation can also be used to study the case of  

two (or more) isolated pressure distributions. It would thus be possible to estimate nonlinear 

interactive forces in the case of  barges being towed in tandem. Clearly the total drag of  such a 

configuration would be strongly affected by the separation distance and some optimization 

may be possible. 

The extension to the finite depth case is straightforward. Equation (3), relating the real and 

imaginary parts o f z ' ( f )  on ~0 = 0 must be replaced by 

2H L ~ x'(~0) d~o 1 
x '  (q~) - ~ ~ (~0- q~)z + 4H 2 = - 

, 1 

- + ( t p - - ~  +--4H z - I  d ~o. 

Here ~b = - H on the horizontal bot tom and the method of  images has been used. Slight addi- 

tional modifications will closely parallel the work of  Vanden-Broeck & Schwartz [9] who com- 

pute periodic progressive waves in shallow water by a similar method. One additional matrix in- 

version will be required when H is finite. Solutions to the finite depth problem will allow direct 

comparison with the method of  Von Kerczek and Salvesen [2] which, because it distributes grid 

points throughout the fluid region, cannot be applied to the infinite depth case. 

With the enormous increase in computational capability that may be anticipated in the com- 

ing years, we have no doubt that the various methods of  solution developed for two-dimensional 

free-surface problems will be viewed as candidates for extension to the more difficult and more 

important class o f  three-dimensional problems. It is our view that, because the present study 
has resulted in a very simple and straightforward technique, the problem of  three-dimensional 
flow produced by a given overpressure and solved by a boundary-integral technique should be 

so considered. 
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